Current Obesity Reports (2025) 14:10
https://doi.org/10.1007/513679-024-00599-4

REVIEW q

Check for
updates

New Frontiers: Umbilical Cord Mesenchymal Stem Cells Uncover
Developmental Roots and Biological Underpinnings of Obesity
Susceptibility

Lauren E. Gyllenhammer’ - Kristen E. Boyle?3

Accepted: 14 October 2024
© The Author(s) 2025

Abstract

Purpose of Review To review evidence supporting human umbilical cord mesenchymal stem cells (UC-MSC) as an innova-
tive model system advancing obesity precision medicine.

Recent Findings Obesity prevalence is increasing rapidly and exposures during fetal development can impact individual
susceptibility to obesity. UC-MSCs exhibit heterogeneous phenotypes associated with maternal exposures and predictive of
child cardiometabolic outcomes. This recent evidence supports UC-MSC:s as a precision model serving three purposes: (1)
as a mechanistic tool to interrogate biological underpinnings of obesity in human studies, (2) as a sensitive index of early
life causes and determinants of obesity, and (3) as a marker and transducer of susceptibility, highlighting populations most
at risk for future obesity.

Summary Data from UC-MSCs emphasize nutrient sensing and lipid partitioning as phenotypes most relevant to neonatal
and early childhood adiposity and implicate a role for these cell-autonomous features of mesodermal tissues in the biologi-
cal underpinnings of obesity.

Keywords Mesenchymal stem cells - Childhood obesity - Pregnancy - Adipose - Skeletal muscle

Introduction pathways contributing to disease risk throughout life. Human

umbilical cord mesenchymal stem cells (UC-MSC) can elu-

This review is grounded in the developmental origins of
disease hypothesis (DoHAD) which posits that exposures
during sensitive periods of early-life development alter the
structure and function of cells, tissues, and organs—with
important implications for offspring health and disease.
Adverse exposures during organogenesis can lead to perma-
nent structural changes in organs or tissues contributing to
changes in tissue function, or may also alter cell-autonomous
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cidate the latter pathway as a representative cell population
integral to the development of offspring mesodermal tis-
sues, importantly skeletal muscle and adipose. Work from
our group and others demonstrates UC-MSCs exhibit hetero-
geneous phenotypes associated with maternal exposures and
predictive of child adiposity and cardiometabolic outcomes.

Here, we present evidence supporting UC-MSC as an
innovative model advancing obesity precision medicine.
Our conceptual model, depicted in Fig. 1, conveys the util-
ity of UC-MSC serving three purposes: (1) a mechanistic
tool to interrogate biological underpinnings of obesity in
human studies, (2) a sensitive index of early life causes and
determinants of obesity, and (3) a marker of susceptibility
via cell-intrinsic changes to mesodermal tissues, highlight-
ing populations most at risk for obesity. We begin with a
brief overview of the fetal origins of obesity, then describe
the origin of UC-MSCs and their practical and theoretical
applications in human obesity research. We will describe the
convergence of the UC-MSC model with pre-clinical and
adult human obesity data to clarify how UC-MSCs inform
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Fig. 1 Schematic depicting the
utility of the UC-MSC model
for interrogating the biological
underpinings of obesity, as a
sensitive index looking back to
fetal exposures most pertinent
and looking forward to identify
those most susceptible to
obesity

Looking Back
informing pertinent
fetal exposures

pathways and etiology of obesity. Finally, we conclude by
reviewing the body of human UC-MSC literature in the
context of later life obesity risk and impactful randomized
clinical trials.

Developmental Roots of Obesity

Obesity Prevalence and the Developmental Origins
of Disease

Obesity prevalence has substantially increased over the last
60 years, with obesity rates tripling (13% to 43%) and Class
III obesity increasing tenfold (1% to 10%); leading to the
classification of nearly 70% of all adults as overweight or
obese [1]. Likewise, childhood obesity has nearly doubled
in the U.S. in the last 20 years [2] and children with obesity
are at greater risk for maintaining obesity into adulthood
[3, 4], contributing to insulin resistance, chronic low-grade
inflammation, and metabolic dysfunction over the lifecourse
[5-7]. Over the last 60 years, the United States and other
industrialized countries have experienced pervasive shifts
towards what is known as an “obesogenic” environment, but
the impact of adverse environments are not equal across the
lifespan. In one of the earliest reports of the early life influ-
ences on chronic adult disease nearly 40 years ago, David
Barker and Clive Osmond noted that infant mortality rates
and birth weights were associated with deaths from ischemic
heart disease decades later [8]. Since then, epidemiological
and animal evidence supports that adverse exposures during
pregnancy provide important and independent contributions
to risk for many common, complex diseases across the lifes-
pan, including obesity.

Developmental Exposures that Predispose Toward
Obesity

Box 1. Terminology for the Impact of Early Life Exposures
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The term ‘developmental programming’ is commonly used as a
catchall phrase to describe adaptations to environmental cues dur-
ing fetal or early life development.

However, the term ‘programming’ implies determinism that is not
always borne out. Terms like “susceptibility” or “predisposition”
more accurately reflect the large degree of heterogeneity in oft-
spring outcomes following fetal exposures. In this review, we will
use the term ‘developmental susceptibility’

Exposures during early life, particularly during the
critical window of fetal development, have a significant
impact upon one’s individual susceptibility to the adverse
effects of our pervasive obesogenic environment across
the lifespan (reviewed here [9]). The vast majority of
human research has focused on weight-based assessments
of maternal adiposity (e.g., pre-pregnancy BMI/obesity
status or gestational weight gain) or clinical diagnoses
(e.g., gestational diabetes mellitus [GDM]) [10, 11] and
these factors will, therefore, serve as the foundation for
this review. A recent meta-analysis synthesizing data from
nearly 90,000 children reported exposure to obesity in
utero increased odds of obesity 264% through age 14 [10].
Most striking, an individual participant data meta-analysis
of over 160,000 children shows that over half of those
exposed to obesity in utero (53%) developed overweight
or obesity by 18 years (BMI > 85th percentile) [11]. While
this cycle of obesity undoubtedly includes the influence of
shared genetic and post-natal environment [12], evidence
for the independent impact of prenatal environment comes
from animal models [13], epidemiology [14], and human
studies among sibling pairs born before and after a sig-
nificant change in the intrauterine environment [15, 16].

Specific, pertinent exposures implicated in the devel-
opmental susceptibility for obesity can be quite varied,
and changes to maternal nutritional or physical activity
status, chemical exposures in the form of pollutants, drugs
or alcohol, or alterations in circulating hormone levels
(linked to nutritional status or psychological or biological
stress) are also implicated [17]. In animals and humans,
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many obesity-associated traits in maternal circulation are
promotive of offspring adiposity and obesity, including
elevated maternal insulin, oxidative stress, inflammation,
or lipid availability (free fatty acids [FFA], triglycerides)
[18-23]. Furthermore, there’s evidence that these fac-
tors associate with offspring metabolic health independ-
ent of maternal obesity status [13, 23]. Yet, only factors
that cross or are metabolized through the placenta, or that
otherwise impact placental health or function, can bio-
logically impact the fetus. Notably, maternal body-size or
weight itself cannot affect the fetus. Considering the sub-
stantial heterogeneity of the circulating maternal milieu
in the context of obesity, deeper understanding of the bio-
logical underpinnings of developmental susceptibility for
obesity will require moving beyond weight-based meas-
ures of exposure, rather quantifying those that translate to
biological exposures in the fetal compartment. This work
demonstrates the independent impact of fetal exposures
on offspring obesity risk, yet we do not understand how
this process occurs in humans or what even the most per-
tinent exposures are, which will be critical information
for developing optimal interventions that target specific
driving exposures in children who are at greatest risk for
obesity.

Advantages and Limitations of UC-MSCs
Biological Relevance of Mesenchymal Stem Cells

Box 2. Advantages & Limitations of UC-MSCs

Translational Impact
o UC-MSC:s exhibit heterogeneous phenotypes associated with
maternal exposures & predictive of child cardiometabolic outcomes

Non-Invasive
e UC-MSC:s enable us to define human mesodermal tissue pheno-
types, without invasive sample collection

Cell-Autonomous Investigation

e Obesity-exposed UC-MSCs phenocopy maternal obesity &
established obesity adipocyte and myocyte phenotypes but are not
confounded by systemic or niche-specific factors

Limitations

e UC-MSC naiveté to tissue environments limits some translatability
to human, in vivo tissue development

e We do not know whether exposure-related UC-MSC phenotypes
match developed mesodermal tissues

o Timing & mechanisms for exposure-induced impacts on UC-MSC
phenotypes are unclear

Alterations in metabolic pathways relevant to obesity risk
have been observed as early as blastocyst implantation [24].
Morover, consistent changes have been observed across fetal
tissues, including umbilical cord, liver, and cardiac mus-
cle, suggesting that exposures during the periconceptional

window can lead to early stem cell lineage adaptations or
concurrent adaptations in multiple tissues [25-27]. In the
embryo, gastrulation forms three germ layers of progenitor
cells that will further develop into all fetal tissues: endo-
derm, ectoderm, and mesoderm. It is the mesoderm and
the mesenchymal progenitors (i.e., MSCs) that develop the
mesodermal tissues during organogenesis—adipose, bone,
cartilage, skeletal muscle, Thus, MSC niche of the develop-
ing embryo will eventually give rise to all muscle subtypes:
cardiac, smooth, and skeletal muscle tissues; connective tis-
sues: chondrocytes and fibroblasts of cartilage, ligaments,
and tendons; bone; and all adipose tissues: visceral and sub-
cutaneous, including brown, beige and white.

Concurrent with fetal development, the umbilical cord
is formed from the extraembryonic mesoderm within the
amniotic cavity [28]. The umbilical cord originates from
the embryoblast (i.e., is genetically fetal) and umbilical
cord Wharton’s Jelly is an incredibly rich source of fetal
MSCs [29], easily accessible, noncontroversial, and can be
non-invasively cultured from typically discarded umbilical
cord tissue at birth. Wharton’s Jelly MSCs express markers
consistent with primitive, multipotent stem cells [30, 31].
MSC:s are an inherently heterogeneous cell population with
multiple defining markers: cluster of differentiation (CD)73,
CD90, and CD105, are characteristically plastic adherent,
and must demonstrate ability to differentiate to mesodermal
lineages [32].

Technical Advantages of UC-MSCs

Although umbilical cord blood and cord blood cells are also
readily available from discarded tissues after birth, these
only available in limited quantities. UC-MSCs are highly
proliferative, can be extensively expanded in culture, and
can be cryopreserved for repeated use for over a decade (or
more), making them a highly feasible and practical human
cellular model. As progenitors for mesodermal tissues, we
can test not only the initial stem cell state (e.g., proliferative
capacity, lineage preference), but we can induce in vitro dif-
ferentiation to tissue relevant phenotypes (e.g., adipocytes,
myocytes), which may better reflect later life offspring out-
comes. This also allows us to test how the initial stem cell
state contributes to the development of differentiated cell
phenotypes (e.g., how does the initial epigenetic signature
impact the development of myocellular metabolism or the
immune activating properties of adipocytes). Furthermore,
as a living resource, we can mechanistically interrogate the
pathways involved.

Theoretical Advantages of UC-MSCs

The susceptibility to and biological underpinnings of obe-
sity are multifactorial, with evidence to support cell and
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tissue-specific changes as well as multi-organ systemic
changes. UC-MSC:s have the potential to inform both empiri-
cal frameworks. First, MSCs are multipotent progenitors
with the capacity to differentiate into pertinent peripheral
tissues for interrogating the biological underpinnings of
obesity: adipose and skeletal muscle. Second, UC-MSCs
can serve as a representative stem cell population reflecting
change across tissues, either due to early stem cell lineage
events or broad gestational exposures impacting multiple
systems, including umbilical cord. Moreover, interrogating
cells or tissues with the capacity to perpetuate long-term
obesity risk is optimal. Most research in this field uses termi-
nally differentiated cells with finite lifespans (e.g., monocyte
lifespan ~ 2—7 days [33], adipocyte lifespan ~ 10 years). For
example, many interrogate the influence of fetal exposures
on white umbilical cord blood cell epigenetic signatures,
though easily collected and measured, have a relatively short
life span and are representative of immune cell populations.
We posit that investigation of stem cell populations, includ-
ing UC-MSCs, allows for focused interrogation of cells per-
tinent to long-term obesity risk.

Importantly, fetal MSCs are not only the building blocks
for the diverse mesodermal tissues during fetal organogen-
esis, but MSC progenitors originating from the same fetal
MSC niche are retained in these developed tissues for post-
natal growth and repair across the lifespan (e.g., adipose
derived stem cells [ADSC] [34], skeletal muscle satellite
cells [35], bone marrow MSC [36], and synovial MSCs
[37]). Thus, phenotypic changes to the initial MSC line-
age may not only alter tissue development in utero but may
maintain tissue phenotype throughout life. For example,
adipose-derived MSCs from adults with established obesity
or type 2 diabetes exhibit perturbations to lipid accumulation
and proliferation during in vitro adipogenesis [38, 39] which
correlates with the in vivo metabolic phenotype of the donor
[39], suggesting capacity for adipogenesis is intrinsic to the
progenitor cell. Likewise, for muscle, ourselves and others
have shown satellite cells from adults with established obe-
sity and/or insulin resistance exhibit altered lipid metabolism
when differentiated to myotubes in vitro [40—42]. These sat-
ellite cell metabolic outcomes often track or correlate with
the in vivo metabolic phenotype of the donor [40, 42], sug-
gesting that altered lipid metabolism is a cell-intrinsic fea-
ture of obesity that can be measured in cells and tissues of
MSC origin.

Adult progenitor cell studies do not address whether
cell-intrinsic phenotypes are present prior to the develop-
ment of obesity or simply represent a ‘metabolic mem-
ory’ from the tissue niche. UC-MSCs were not developed
in the fetus with tissue-specific factors that may impart
such ‘memory’, as observed with visceral or subcutane-
ous adipose depots [43], but still exhibit heterogeneity in
epigenetic and metabolic phenotypes based on pregnancy
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characteristics [44—73] that correlate with infant and child
obesity-related outcomes [44, 53, 54, 5660, 62-64, 66,
67, 74]. Emerging research harnesses this heterogeneity as
a precision index of offspring obesity risk. But knowledge
gaps remain. For example, we don’t yet understand how
or when UC-MSCs develop these metabolic phenotypes.
Related, we don’t know whether UC-MSC features directly
mirror molecular phenotypes of developed fetal or infant
tissues. Addressing these questions will be important to
the field. Nevertheless, UC-MSCs do retain clinically rel-
evant phenotypic heterogeneity, representing an important
advance in obesity medicine.

Looking Under the Hood: UC-MSCs
as Tool to Interrogate Biological Pathways
Implicated in Obesity

Early Work Implicating the MSC Niche
in Obesity-Linked Pathways

A foundational aspect of our early using work using human
infant UC-MSCs was to verify that observations from animal
models of maternal obesity, primarily offspring mesodermal
phenotypes, were similarly evident in human UC-MSCs dif-
ferentiated to these cell types (e.g., myocytes, adipocytes).
Importantly, we also evaluated undifferentiated MSCs to
capture the initial stem cell settings that inform preference
(i.e., lineage specification) and capacity to differentiate to
specialized adipocyte or myocyte phenotypes.

Early work from Du and colleagues specifically impli-
cated offspring MSC lineage specification in the develop-
ment of excess offspring adiposity, both in adipose tissue
mass, and in ectopic lipid stores in skeletal muscle tissues
[75, 76]. They hypothesized that disruption to the glycogen
synthase kinase (GSK)—3f/p-catenin pathway, a primary
driver of MSC myogenesis and inhibitor of adipogenesis
[77, 78], results in reduced muscle fiber size and greater fat
deposition in skeletal muscle from obesity-exposed fetuses
[75, 76]. Our first UC-MSC report similarly showed lower
inhibitory phosphorylation of GSK-3f and lower p-catenin
in undifferentiated MSCs from obesity-exposed infants [44]
and, as in animal tissues, differences in mesodermal pheno-
types with in vitro differentiation. Specifically, markers of
adipogenesis (e.g., lipid content, peroxisome proliferator-
activated receptor [PPAR]y protein content) were higher in
UC-MSCs from infants exposed to obesity in utero [44].
Moreover, PPARYy inversely correlated with the myogenic
marker myosin heavy chain [44], suggesting perturbation
to the GSK-3p/p-catenin pathway contributes to altered
UC-MSC specification. Together, these data suggest UC-
MSC lineage specification could impact offspring body
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composition, with preferential recruitment toward adipose
tissue in the context of maternal obesity.

Disrupted UC-MSC Adipogenesis is Linked to Excess
Adiposity

Animal models of maternal obesity demonstrate altered
adipose-resident MSCs that correspond to obesity pheno-
types in offspring, supporting the premise of 1) long-term
impacts of obesity-induced changes to the fetal MSC niche
that 2) extend to differentiated cell types (i.e., not only evi-
dent in lineage specification of stem cells). For example, in
genetically identical mice, offspring of high-fat-fed dams
consistently demonstrate excess adiposity [79-81], and
adipose-resident MSCs (i.e., ADSCs) from these offspring
demonstrate greater capacity for adipogenesis when cultured
and differentiated in vitro [82, 83]. Importantly, this is evi-
dent in cells collected before or after offspring development
of excess adiposity, and even when post-natal exposures are
controlled by cross-fostering to lean dams during lactation
[82]. To our knowledge, the only similar example in humans
focuses on low birth weight as an adverse prenatal exposure.
ADSCs from adults born with low birth weight demonstrate
reduced adipogenesis markers and lower leptin production
with in vitro adipogenesis, relative to normal birthweight
counterparts [84]. Remarkably, this was correlated with
lower circulating leptin levels in vivo. Together, these data
suggest cell-intrinsic adipogenesis phenotypes are evident
in offspring MSCs prior to the onset of overt obesity, and
point to specific effects of the intrauterine environment in
promoting these differences.

One adipogenesis driver implicated in maternal obesity
is zinc finger protein (ZFP)423, a well-known regulator of
preadipocyte specification and differentiation [85]. Greater
adipose mass in offspring of obese dams is linked to elevated
ZFP423 both in adipose tissue and ADSCs [82, 83]. Moreo-
ver, greater zfp423 in obesity-exposed offspring corresponds
to fewer numbers of ADSCs in the adult adipose depots
compared with offspring of control dams [83]. When adult
offspring are challenged with high fat diet, those exposed
to maternal obesity exhibit reduced progenitor hyperplasia
and greater adipocyte hypertrophy, accompanied by mac-
rophage infiltration, oxidative stress, and systemic glucose
intolerance [83]. We recently developed a novel model of
3-dimensional (3D) UC-MSC adipogenesis that phenocopies
these animal models with adipocyte hypertrophy, reduced
proliferation, and disrupted ZFP423 [53]. In 3D adipogen-
esis culture, UC-MSCs develop round, lipid filled cells of
classic adipocyte morphology that allowed us to quantify
individual cell size and number. We demonstrated human
UC-MSCs exposed to maternal obesity have greater adipo-
genic propensity, characterized by hypertrophy and reduced

proliferation. ZFP423 protein abundance was associated
with transcriptomic differences in cell cycle, MSC lineage
specification, and metabolism pathways, assessed prior to in
vitro adipogenesis. Moreover, adipocyte size was inversely
associated with serum adiponectin in early childhood, which
could indicate long-term health consequences. These results
from animals and our UC-MSCs are consistent with adipo-
cyte hypertrophy and reduced cell number in established
obesity [86, 87], and suggest disruption to MSC adipogen-
esis may play a role.

Disrupted Lipid Metabolism and Nutrient Sensing
Pathways in UC-MSC Myogenesis

In larger mammals (e.g., sheep, primates) skeletal muscle
and liver of high fat-fed dams exhibit disruption to insulin
signaling, excess oxidative stress and inflammation, and def-
icits in oxidative metabolism and nutrient sensing pathways
when compared with fetuses of control-fed dams [88-91].
Disrupted fatty acid oxidation and intramyocellular lipid
accumulation are well-documented in skeletal muscle of
adults with established obesity and are linked to inflamma-
tion, oxidative stress, and insulin resistance [40, 92-94]. As
with ADSCs, some of these characteristics are also evident
in muscle-resident progenitors from the MSC niche (i.e.,
satellite cells) [41, 95, 96]. Few have investigated offspring
satellite cells with respect to intrauterine exposures, though
McCurdy et al. [88] show deficits in oxidative metabolism
in both skeletal muscle and muscle-derived satellite cells
from fetuses of obese, insulin resistant primates. Disrup-
tion to energy sensing pathways, such as AMP-activated
protein kinase, sirtuins, and molecular target of rapamycin,
are observed in rodent and sheep offspring of obese dams
[75, 89, 97-99]. We posit that disruption to nutrient sensing
pathways in fetal MSC niche may play a role in altered lipid
partitioning and metabolic dysfunction, impacting mesoder-
mal tissues and tissue-resident progenitors.

We and others have observed disruption to metabolic and
nutrient sensing pathways in MSCs from infants exposed to
intrauterine obesity [50, 56, 60] or GDM [47, 49, 51, 73].
During myogenesis, we show this may result in excess lipid
accumulation in obesity-exposed UC-MSCs [56], broadly
recapitulating results from animal models of maternal obe-
sity. We found differential DNA methylation near genes
related to oxidative metabolism [56], though deeper meta-
bolic interrogation of the UC-MSCs indicates maternal met-
abolic health may be more relevant than obesity per se [60,
66]. We found metabolically efficient and inefficient phe-
notypes within the obesity-exposed UC-MSC group when
differentiated to myotubes, where inefficient UC-MSCs have
lower baseline lipid oxidation and reduced response to meta-
bolic challenge in vitro [60]. These differences were related
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to maternal insulin, glucose, and HDL cholesterol, and to
neonatal adiposity [60]. We also reported UC-MSC insu-
lin action during myogenesis was correlated with maternal
FFA and UC-MSC triglyceride deposition, but not obesity
status [66]. To interrogate UC-MSC phenotypes more com-
prehensively, we measured lipidomics during myogenesis,
performing clustering analysis of lipid species. UC-MSC
clusters are largely dependent on myotube triacylglycerol
stores and track with a maternal metabolic milieu composite
index (i.e., triglycerides, FFA, tumor necrosis factor [TNF]
o, HDL- and total- cholesterol, glucose, and insulin), inde-
pendent of maternal BMI. Remarkably, cluster also tracked
with child adiposity trajectory through 4—6 years of age.
(Accepted [67]).

Together, these data support that developmental expo-
sures can impact offspring lipid metabolism and nutrient
sensing pathways in the offspring MSC niche, prior to the
onset of overt obesity. This appears to manifest as adipocyte
hypertrophy and altered lipid metabolism and lipid parti-
tioning in myotubes. These UC-MSC effects are stable and
cell-autonomous, such that even when cells are removed
from the tissue environment and passaged in vitro, daughter
cells retain the phenotype. These findings indicate utility
of UC-MSC:s for interrogation of pertinent fetal exposures
contributing to heterogeneity in the susceptibility to obe-
sity in human infants. Furthermore, they implicate charac-
teristics intrinsic to peripheral tissues in this susceptibility
that could support primary prevention efforts in a precision
manner.

UC-MSCs: A Robust Tool Defining the Most
Pertinent Fetal Exposures & Precision Index
of Future Obesity

One of the greatest limiting factors in human cohort and
interventional studies interrogating the influence of early
life exposures on obesity risk is the extended length of time
for outcome measurement. While there is evidence that pre-
natal exposures can influence birth weight and birth adipos-
ity [100, 101], obesity cannot be clinically diagnosed until
2 years of age and, as previously discussed, the impact of
fetal exposures on obesity risk increases as children age with
the greatest effect size in children over 10 years old [11].
Thus, cohort studies with prospective exposure measure-
ment, or randomized prenatal interventions would need to
follow children over gestational development plus an addi-
tional 2 years to capture clinical obesity (or 10+ years to
capture more robust effects). There is a pressing need for
precision assessments at birth that predict propensity for
obesity, informing prenatal observational and intervention
efforts. We propose UC-MSCs as a promising tool to help
address this critical gap.

@ Springer

UC-MSCs Predict Early Childhood Adiposity

There is growing evidence to support the clinical relevance
of UC-MSCs, specifically that UC-MSC phenotypes pro-
spectively associate with long-term child outcomes, includ-
ing child adiposity measures. In Table 1, we describe the
UC-MSC phenotypes that relate to offspring characteristics.
Among 14 studies [44, 53, 54, 56-60, 62-64, 66, 67, 74],
most reported UC-MSC relationships with neonatal char-
acteristics, particularly percent fat mass (%FM) measured
within the first month of life. Four studies describe rela-
tionships that extend beyond the neonatal period, report-
ing data up to 6 months of age and, of these, two studies
from our group report relationships through early child-
hood (4-6 years). Although the form and phenotype of UC-
MSC varies across studies, studies predominantly interro-
gated myocyte or adipocyte phenotypes, typically by lipid
accumulation or metabolism measures. Results from these
studies highlight lipid metabolism as a central pathway in
the biological underpinnings of obesity. For example, UC-
MSC triglyceride content during in vitro adipogenesis pre-
dicts in vivo %FM with repeated measures from birth to age
4-6 years [54]. Importantly, UC-MSC triglyceride content
more robustly predicted child %FM at 4-6 years than more
common neonatal predictors (i.e., birth weight, %FM at
birth), and explained an additional 13% variance in child
adiposity [54], indicating medium effect size. More recently,
we demonstrate UC-MSC lipidomic profiles during myogen-
esis also predict child adiposity at 4-6 years (Accepted [67]).
Together, these data help establish the clinical relevance of
UC-MSC phenotypes, supporting their use in future studies.

UC-MSCs Exhibit Developmental Plasticity Linked
to Prenatal Exposures

UC-MSC phenotypes not only predict child adiposity out-
comes, but importantly, many of these features exhibit vari-
ation in response to developmental exposures. UC-MSCs
can serve as sensitive markers of these exposures at birth,
as shown in Table 2 [44—73]. Most papers demonstrating
UC-MSC developmental differences are from observational
mother—child cohorts, such as the Healthy Start Cohort used
in our studies [44, 52-60], and include exposures measured
as part of standard obstetric care, such as maternal obe-
sity status [44-46, 50, 52, 53, 56, 57, 60, 61, 65] or GDM
[47-49, 51]. Among these, intrauterine exposure to obe-
sity is the most frequently studied. However, exciting new
research from randomized clinical trials (RCT) have shown
changes to UC-MSC phenotypes in response to prenatal
exercise intervention [61, 63, 64].

Meta-analyses evaluating RCT pregnancy lifestyle inter-
ventions on child weight-based or anthropometric outcomes
(7 studies, 2535 children) [102, 103] have concluded that
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Table 1 UC-MSC phenotypes associated with child outcomes

First Author, Year MSC Form MSC Phenotype Child Outcomes Direction of Child Age(s) Cohort; N
association
Penolazzi et al. Osteocytes RUNX-2and ALP  Weight & gestational  + Birth N=20
2009[62] activity age at birth
Boyle et al. 2016[44] Adipocytes Lipid content %FM (PeaPod) + Birth Healthy Start; N=29
Shapiro et al. Adipocytes PPARYy response to  %FM (PeaPod) + Birth Healthy Start; N=46
2016[59] nicotinamide
Boyle et al. 2017[56] Myocytes  Incomplete/Com- %FM (PeaPod) +* Birth Healthy Start; N=29
plete FAO
Boyle et al. 2017[56] UC-MSC  DNA methyla- %FM (PeaPod) + Birth Healthy Start; N=29
tion, PRKAG2:
cg20534694
Boyle et al. 2017[56] Myocytes  Incomplete/Com- Cord blood insulin +* Birth Healthy Start; N=29
plete FAO
Baker et al. 2017[57] Myocytes  Acylcarnitine %FM (PeaPod) + Birth Healthy Start; N=24
marker of incom-
plete FAO
Baker et al. 2017[57] Adipocytes Gene expressionin  %FM (PeaPod) - Birth Healthy Start; N=24
nutrient sensing
pathways
Baker et al. 2017[58] Adipocytes Long-chain acylcar- %FM gain (PeaPod)  + Birth, 4-6 mo Healthy Start; N=24
nitines
Baker et al. 2017[58] Myocytes ~ Amino acid concen- %FM gain (PeaPod) - Birth, 4-6 mo Healthy Start; N=24
trations
Erickson et al. Myocytes  Complete FAO %FM (PeaPod) - Birth Healthy Start; N=29
2021[60]
Chavez et al. Myocytes  Insulin action Cord blood leptin + Birth Healthy Start; N=19
2022[66]
Keleher et al. Adipocytes Adipocyte size Peripheral blood - 4-6 yr Healthy Start, N=39
2023[53] adiponectin
Gyllenhammer et al. ~ Adipocytes Triglyceride content %FM (PeaPod/Bod-  + Birth, 4-6 mo, 4-6 yr Healthy Start; N=124
2023[54] Pod)
Gyllenhammer et al. ~ Adipocytes Triglyceride content Fasting glucose + 4-6 yr Healthy Start; N=124
2023[54]
Jevtovic et al. UC-MSC  Incomplete FAO %FM (skin-fold) + Birth ENHANCED RCT;
2023[63] N=48
Jevtovic et al. UC-MSC  Nonoxidized glyco- Blood lactate + 1 mo ENHANCED RCT;
2023[63] lytic metabolite N=438
Jevtovic et al. Myocytes  Insulin sensitivity %FM (skin-fold) - Birth, 6 mo ENHANCED RCT;
2023[64] N=48
Jevtovic et al. Myocytes  Glucose oxidation Blood lactate - 1 mo ENHANCED RCT;
2023[74] N=48
Gyllenhammer et al. Myocytes  Lipidomics, %FM (PeaPod/Bod-  n/a** Birth, 4-6 mo, 4-6 yr Healthy Start; N=31

2024[67]

K-means cluster

Pod)

*Identification of distinct subgroups within obesity-exposed infants resulted in three groups (normal weight- & 2 obesity-exposed, which dif-
fered by parameters listed. **Cluster analysis resulted in three groups that demonstrated differences in adiposity across repeated measures of adi-
posity from birth through age 4-6 years. Abbreviations: PPARYy, peroxisome proliferator-activated receptor y; FAO, fatty acid oxidation; %FM,
percent fat mass; PeaPod/BODPod, measured by air displacement plethysmography

pregnancy interventions have small study effects on child-
hood obesity and no effect on child anthropometrics. Louise
et al. [102] conclude that pregnancy lifestyle interventions
are unlikely to be successful and that pregnancy itself may
be too late for interventions. Indeed, important shifts in
susceptibility for obesity may occur in the periconceptional

period, prior to the onset of most pregnancy interventions
[104], but we would argue lack of sensitivity in offspring
assessments may account for lackluster intervention out-
comes. The growing emergence of UC-MSCs as a robust
at-birth predictor of neonatal and early childhood adiposity
may fill this gap [54]. The ENHANCED trial demonstrates
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UC-MSC phenotypes are not only timely (i.e., readily avail-
able at birth without long-term follow-up), but they may
also capture offspring interventional changes missed by less
sensitive neonatal assessments. In this trial, exercise inter-
vention did not change offspring birth weight, but there was
evidence of decreased skin-fold measures at 1 month of age
[105]. Yet, the smaller subset of UC-MSC samples (N =
41) showed that exercise increased UC-MSC fatty acid oxi-
dation and insulin-stimulated glucose storage. These same
UC-MSC phenotypes associated with lower offspring %FM
at 1 month [63, 64] and 6 months [64] of age, supporting
that UC-MSCs are perhaps a more sensitive index of fetal
exposures linked to pregnancy intervention and child adipos-
ity, despite smaller sample size. These studies also highlight
that interventions initiated in the 2nd and 3rd trimester, as
in the ENHANCED trial, may still be impactful for chang-
ing offspring obesity risk, despite missing the potentially
important periconception window [61, 63, 64].

Another notable feature of the ENHANCED trial is that
maternal weight-based measures were either balanced by
design (matched for BMI) and/or unchanged by the inter-
vention (gestational weight gain) [63, 105]. Despite a lack
of difference in these commonly used weight-based assess-
ments of fetal exposure, UC-MSC metabolic features were
significantly changed by exercise exposure [61, 63, 64].
Though important proxies at large scale, maternal obesity
and GWG are imprecise markers of metabolic health at
the individual level. Presumably other metabolic features
of the pregnant person (e.g., circulating metabolic milieu)
were altered by exercise training, that then causally medi-
ated UC-MSC change. Similarly, although the Healthy Start
cohort originally framed UC-MSC differences based upon
intrauterine obesity exposure, as detailed above, more recent
reports from our group echo the concept that maternal meta-
bolic health is likely more important in transmitting adverse
MSC and later life child phenotypes than maternal weight/
obesity status per se [56, 60, 66, 67]. This makes biological
sense, given that only factors that cross or are metabolized
through the placenta, or otherwise impact placental function,
can impact the fetus. Precision obesity prevention efforts
will require us to move beyond readily available clinical or
weight-based exposures, and to quantify prenatal exposures/
pathways that have the potential to mediate fetal physiology.

Conclusion & Future Directions

Obesity prevalence is increasing rapidly and exposures dur-
ing fetal development have a significant impact on indi-
vidual susceptibility to obesity across the lifespan. Yet
specific, pertinent fetal exposures are largely unknown.
There is a pressing need for precision obesity indicators at
birth, informing pregnancy intervention efforts. We propose

@ Springer

UC-MSC:s as a novel tool to help address these critical gaps.
UC-MSC results are quite promising for obesity medicine,
both as a mechanistic tool to interrogate the biological
underpinnings of obesity, and at-birth indicator of prena-
tal exposures and future obesity susceptibility. UC-MSC
studies highlight the need to shift away from weight-based
measures of fetal exposures and offspring outcomes, rather
focusing on factors biologically impacting fetal physiol-
ogy and precise measures of offspring metabolic health.
Data from UC-MSCs emphasize nutrient sensing and lipid
partitioning as phenotypes most relevant to neonatal and
early childhood adiposity and implicate a role for these cell-
autonomous phenotypes of mesodermal tissues in the bio-
logical underpinnings of obesity. Yet, we acknowledge the
field is young, limitations remain as highlighted in Box 2,
and much work is needed to substantiate these encouraging
findings.
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